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ABSTRACT

The paper is divided into two parts.

In Part I. problems referring to guidance requirements are
solved following the general approach of Ref.l; errors in velo-
city and angles represented by means of errors in limiting conic
parameters produce variations in maximum deceleration total
heat transferred angular ranges. etc. Charts to evaluate such
variations are described.

In Part II perturbations with respect to the simplifying as-
sumptions are considered and a.general small-perturbations theo
ry is developed. Any perturbation gives rise to changes in the
limiting conic parameters: by considering the effect of a unit
perturbation the effect of a distributed set of them is obtained

by simple integration.




INTRODUCTION

Safe landing of a spacecraft requires as well known, that
some prescribed bounding values of heat transferred, maximum de-
celeration, range traveled, be not overcome. This can be achieved
by prescribing an adequate program of lift and drag modulation:
but - once this has been done - a major problem is a guidance
problem, i.e., to give the proper velocity vector to the space-
craft at a given point.

Following a preceeding work of the Author (Ref 1), instead of
the velocity vector, and without any need to define a “re-entry
a‘ltitnde", the parameters of the limiting, or approach conic can
be selected. Thus, the problem arises to evaluate the effects
on engineering quantities (such as heat, deceleration, range,
etc.) of errors on such limiting comic parameters, or, converse-
ly, to evaluate maximum tolerable errors in limiting conic para--
meters so as to preven undue overcoming of engineering quanti-
ties boundaries. This can be done if a complete set of results,
connecting engineering quantities to conic parameters is availa-
ble; if a grnphical presentation is prepared, very saimple con-
structions allow a ready answer to the most of gurdance require-
ments problems.

Some errors in the evaluation of such guidance problems can
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arise from the simplified scheme upon which the theoretical a-
nalysis is performed. Sc¢condary causes can sometimes produce ng

¢

ticeable effects, which are to be calculated. If the ' cause’ 1is
a first-order one a linear theory of small-perturbations canbe
developed. Disturbances arising from nonsphericity of the earth.
variation of gravity, mass changes during flight (ablation) can
be adequately represented by disturbing forces acting along the
various points of the trajectory: and the basic singularity is
then the effect of a unit pulse acting at a generic point of the
trajectory. By using the approach of limiting conic parameters,
the said disturbing pulse can be regarded as that producing a
change in the limiting conic parameters of the portion of tra-
jectory following it. And, so, each point of the disturbed tra-
jectory is considered as belonging to a (fictitious) trajectory
whose limiting conic is changed with respect to the undisturbed
one; the change .is given by the sum of those produced by the di-

sturbances preceeding the point under concern.



PART I

GUIDANCE. BREQUIREMENTS FOR.:RE- ENTRY.

1 .- Introductory remarks and recalls on similar solutions .

It has.been shown in.Ref. 1 ‘that re-entry trajectories - of

spacecrafts are described by the two simultaneous differential

.equations:

d 1 h L kp
2 ( ) ¢ - = = 0 )
"Udr | Tlcos?8 @ | W D cos38

> (D)
d log —3
» kp L
(1 - — .
o + n B 1 D tan8) = 0 y

Here the independent . variable r is thedistance from the earth’s
center, whereas the unknowns are .6 (flight path angle) .and v
(area.l velocity={velocity. V}xr cos@ ) ; h .is the gravitational
constant ({gravity acceleration g}"2r2), p 1s the density. The
parameter k is equal .to (Cpd)/m , (where C, is the drag
coefficient, A 1is the frontal area, = isthe bodymass), and
.can be modulated along the trajectary, as well as the lift/drag
ratio (L/D). Modulation can also include variation of Cpva(L/D)
(Ref. 2).

Egs. (1) were solved in Ref.(1) for the density law or" =const., (a= 900,

for the earth). It should be pointed out that such law is prac-
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tically coincident with the commonly accepted one peP2=const.

(with z = altitude, 8= sarih ~adius’) and lends itself much better
for similarity purposes.

In order to obtain.similarity laws it is interesting to take

as reference values the quantities at the point where the .total
deceleration reaches its maximum value,or deceleration pesk (DP).
If there is more than one deceleration peak, reference can be
made to any one of them. Quantities at DP (denoted by a star)

are .connected by the equation:

kspere = aesinf, (2)

where: ks is the value of &k at DP; and:

) __d_m\[ L,
a - d(r/r.)[ n 141 D %1}

Qe = - (3)
sin 6, ’ L 2
1 —_)
Ne 1 +( D *
Thus, 1f the non-dimensional abscissa is introduced:
£ =1 - —* (4)
r
and it is set:
L
k= ka(g) 3t el (5)

Egs.(l) can be reduced, in nondimensional form, to the only
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equation:
d nAglaesinBe) (1-£)* d  (1-£)7
(1-£)? - —{—)
1-¢) d& Logd cos’o d¢  cos?8 ;
(assinBs)nl1-£)®
y s O P Ngtan8) = 0 (6)

sin@

The boundary conditions ‘to. Eqs. (6) .can be established in two
different ways. According to the first way, values of maximum
deceleration (n,g,) and angle 8, can be prescribed at DP
(£=0). According to the alternative way, it is seen that the
limiting. form of Eqs.(l) - as p approaches zero - yield the two
properties of the keplerian conic- areal velocity w-= const.;
total energy E=V2- h/r = const. And so, the boundary conditions
to Eqs. (6) may also prescribe the nondimensional .limiting value

of the conic in variants:

. w2
lim e = K = const.
as £-1 (7)
. V2-(h/r)
lim -T/-r—.——- = € = const.

Since, however, the two alternative ways of assigning boundary
conditions to Eq.(6) must provide - obviously - the same solu-

tion - there must be obviously a correspondence of the type:

€ =¢ (n,, 6,) n, = n,le , «)

(8)
k =x (n,, 6) 6, =6_le , «x)
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The problem is so established in.a similar form (since the
ballistic parameter ismeliminated), with boundary cconditions at
the deceleration peak, and a continuous .linkage to the outer
space. For all quantities of interest for engineering purposes
.a similarity law will hold, andRef.l provides the law of simi-

larity for each of them.

2 - Limiting contic parameters

The limiting .conic parameters .chosen in Ref. 1 arey as said

above, the total .energy:

E=V? - — (9)

and the areal velocity (or angular momentum):

w = Vrcosf - (10)

They can also be made nondimensional, .and :so .the .two inde-

perident parameters €:, « can be defined:

€ = Ew
h/r‘

(11)
o Yo
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The above choice, although correct in principle needs a re
consid-r-tiow in view of guidance problems.

In fact, an adequate choice should lead to a pair of par.meters
which be sufficiently uncoupled, that is: one depending almost
entirely on the velocity at a prescribed height, and the other
almost entirely on the angle at the same heaght In this w y re-
entry conditions are well described by two such pavameters. Now
1t 1s easily seen that € 1is depending only on V; this is not
the case with « with respect to the angle 6 .

The .quation of nondimensional limiting conic may be written

(Ref. 1):

1+ tan?8 = .-!ie_
k(1 £)?
The v lu x £ tan?0 at DP (£ 0) ‘s consequ ntly given

by.

-1 (12)

It should be pointed out that % is not the angle of the actual
t -ajecto-y at DP (it.. va.l;ae has been denoted by 6. ) nor is it
necessarily a positive value: 1in fact, 1f th lim (ng coni per;
gee 1s higher that r, , the angle +“ r, 1 maginary, and yx 1s
negative,

In any case its value 1s sufficiently characteristic of the

behcv or of the limiting conic from he point of view of the an
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gle 6 , whereas € is most adequately representing the veloci-
.ty V . The parameters € and X will be chosen throughout this

work for guidance analysis purposes.

3 - Guidance errors and corresponding wariations of limiting conic.

Errors in guidance arise from a wrong estimation of angle &,
velocity V,at a given radius r .

Obviously, such errors correspend to undue variations .in .li-
miting conic parameters with respect to design values. Thus:

AE, = AlVY)

(13)
Awy =r A (VcosB)

whence also the errors in nondimensional parameters Ae and Aj

can be calculated:

Ae = Ae AV , AF)
(14)
Ay = Ax(av , A9)

It is of particular interest to consider thencase that quan=
tities such as AV , A9 may be regarded as rebatively small
changes about given values V and 6 . It is thus possible to

obtain A€ and Ayx simply as:



de e
= — — NG
Be ==y &V+ >
(15)
oy 9y
Ay = v AV + % A6

The above written partial derivatives, according to Egs. (9),

(10), (11), have the expression:

B T oy ‘
oV h
€ -0
= -
r (16)
I re ., 9 h h 1
o ( - )2(1 + tan*0) 21 - . ) 7
oy ()2 2 tan 6 ) (h/r)-Ch/r,)
W r cos?0 y? s

The foregoing .expressions can be transformed so as to depend
on. € , x and from ¢ (which means that the dependency of gui-
dance errors on limiting conic parameters is influenced - although
slightly, as it will be seen now - by the altitude).

In view of the application to similar 'solutions, reference is

here made to nondimensional quantities, suchas C,, (Ref.1) given

by:

14 (17)
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and so the following relationships are obtained

a.
ac,f 2 Jer1-¢

]

v
o€ 0
%6
(18)
Ox o k£ x+1)
ac, (e +1)le+1-£)%
3y \/2(x+1)(e+1-5)
=X . ) -
% - 2x+d e+t) (1-27 1!
It 1s therefore easily shown that.
. . de
(.1 ) since > =0 , € is insensitive to angle variations;
(ii) since ¢ has generally small values, x 1- essen: ally
depending on €
(iii) the above indicated partial derivatives are depending

- although slightly - on the value of & , i.e., on the al-
titude at which the errars are consider d
The above said conclusion hold also fo finite error-, al

though the dependency 1s not so easily shown.

4 - Effects on trajectory quantities

In Ref 1, Part I, it is shown as said that .entry condi-
tions .are represented by the nondimensional parameters of the

limiting conic (in this paper the quantities € and x have
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been selected as typical quantities). It is also shown that all
the quantities related to the trajectory such as total heat Q
heat rate g¢q ; velocity V , time ¢t , angular range ¢ , etc.,
can be represented in a " similar” form, i.e., as the product of
a unit dimensional gquantity (depending on the characteristics of
a particular body being considered) by anondimensional quantity
(which is related only to € and x , i.e., independent on the

body itself). Thus, f.i..

Q = Q,(body) 'C.Q(e , %) (19)

A complete summary of quantities such as Q, . q, V1 , etc.,
and of the coefficients CQ , Cq , C, . etc. isgiven in Tab.I,
Ref. 1.

It is also shown in Ref 1 as said above,that an alternative
approach to the problem is to prescribe ratio n, of maxumum dece
leration (at DP. of course) to local gravity and angle 6, at
the same point; such values, can be used as initial conditions
(for £=0 ) and so the relationship between entry and DP con-

ditions are simply given through the equations:

n, n,le , x!

(20)
6.

9‘(6 s x/

There exist no simpler means to establish Egs.(20) than a step-
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-by-step integration of Eq.(6). Approximate analytical formulas
will be obtained later.
The question now arises in which practical way, the effects

of the variations Aec , Ay of the foregoing Art.on n, , 6, , CQ )
Cq , Cv , etc., can be evaluated.

For this purpose .the following procedure canbe used. On a ¢,

x cartesian diagram the curves n,=vonst, 6, =const, CQ =const ,

etc., are plotted; so at every point (describing a particular
entry conditions), the values of n, , 6, , CQ , Cq , etc.,
can be read (Fig.l). (Hereafter the generic property is denoted

by P , and its nondimensional symbol by C.P ).

C

0

= const

s = const

Fig. 1 - Charts for similar solutions.

When charts similar to that of Fig.l are ready and available,

any guidance problem can be solved:



(i)

xf

(11)

(111)
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Evaluation of effects such as the AC, corresponding to
prescribed variations Ae , Ay 1is simply made by consider
ing the point of coordinates € +Ae , x+Ax and reading

on the new points the changed quantity C, +AC, (Fig.2);

- c

Fig. 2 - Effects of changes of limiting conic parameters.

If one considers two quantities P, , P, (such as, f.i.,
CQ and n, ), the question arises to find guidance require
ments so as to allow maximum changes, about the design con
ditions, of value +A’."1 ; -A”.Pt; +A'P2; -A”.P2 (Fig. 3)
In this case the shaded area describes the range of per-
mitted variation of € , x about the starting point;

It is also possible to obtain relationships-connecting
maximum alluwable AX to a prescribed Ae (and vice versa);
this can be accomplished hy associating to each Ay (Fig. 4)
the corresponding value of Ae. If Ae and Ax are trans-

formed into ACV and Af as described in the previous
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Fig. 3 - Evaluation of maximun allowable errors.

Article, a complete guidance requirement analysis can be

performed.

AN

Fig. 4 - max Oy for a preacribed Ac.
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5 - Conic-DP charts

There appears to be a particular interest in quantities at DP
(6, and n,). The importance of .n, is stressedbyits engineer-
ing meaning itself: whereas 6, 1is important mainly in regard
to the fact that it determines scale length (Eq. (2)).
Approximate relationship can be derived in this field. Their va
lidity is enhanced by the fact that - in contrast to local ap-
proximate relationships - they are of average, or global, kind,
and so are reasonably little influenced by the approximations
themselves.

The general equations (6) are firstly re-written for sake of

clearness:

dlog{h/w?) kp L
(1- )=
dr ' sin6 D tan 9
> (21)
d 1 h L kp
2 { )
" dr Tcos?0 * w? D cos’6 0

(for symbols, see Glossary).

It is well known that, as p approaches zero, ¥’ andE approach

constant values, say

follows the law:

2
tan 90

2

vy, and E, ; and the flight path angle &

C

- (22)
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Introducing the nondimensional density:

x = ()8 (23)
r
and letting:
tan?0 = tan’@c + Plx) (24)

¢(x) must vanish at infinity (x=0), and must satisfy the dif-

ferential equation:

h h L a,sind, ;
I L We  31-(1/a)
ax - + 9% =r ") ) 5® cosio * (25)

With a proper choice of the coefficients it iis always poassible

to set:
h h @ \
r(—.}—- —'—2-) = Zn anz" (do = 0)
1 (26)
L assinf, L a.sinf, @ |
- ~ . - b x*
Dc'7 cos?éd D q)cos36, %" n % J
and so, it is obtained from Eq. (25):
® a b g e, azx"
= e " — B gati(led) )N 5 (e
o 2+an aln+1)+1 a o"
b +
+ b gnti-(1/a) ) (27)

n+{
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The problem is thus reduced to find the coefficients a, and

b, . The first set of them (the a_ ’s)'isobtained approximately
by stopping the expansion at n=2 , and by imposing at DP the

following conditions:

w? = w? 1
dw? : dw? as obtained from the equation of
= )
dr dr * ( motion and by the conditions at DP
(d’v’ (dzv’
—_—) = (—)
dr dr’ ™

Simple algebra (App.E) then provides the relationships:

11 o x+1 F )
X al €+1 = 1 (28
+ 1
- log e+ 1
1 sin O«.
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where:

F‘ = F1 (6‘ ,n‘)

> (30)

"x
N
]

F, (6, , n,)

are functions of quantities at DP, given in Appendix. £, is the
point at which density is sensibly zero. The system (28) (29)

provides approximate conic-DP relationships.

6 - Typical Results

Fig;S shows the conic-DP charts for an anmodulated .re-entry
_with lift. The cases L/D=0;L/D=0.1;L/D=0.2;L/D=0.5 were
considered. ' .

It is seen that curves n,= const. can cut each other: this
simply means that .the same entry condition ‘is c;rresponding to

more than one deceleration peak. In the same plane .it is also

very easy to determine the kind of limiting conic (according to
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the sign of € ). On the same plot.curves suchas skipping limit,
re-exit on a circular orbit, homeless re-exit into space may also
shown. (Here only the L/D=0 case is presented)

Similar results are obtained for other values of L/D: it is
seen however that increase of L/D gives rise to a softer trend

in the above said curves. Furthermore no cases of more than one

DP have been found.
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PART II

SMALL-PERTURBATIONS THEORY
IN RE-ENTRY TRAJECTORIES

1 - General considerations

The analytical model which was hitherto considered is a sim-
plified one, i.e., a nonrotating radially symmetric planet anda
radially symmetric atmosphere where the density is varying ac-
cording to a prescribed law.

A more realistic picture of the phenomena must be however be
considered sometimes. The effects of the simplifying assumptions
can be evaluated by considering the effects of such assumptions
as disturbances superimposed to the base-trajectory. Likewise,
maneuvers during re-entry, in order to improve the -accuracy of
a safe landing can also be studied as perturbations superimposed
to the base-trajectory.

The following Articles are devoted to evaluate the effects of
a generic perturbation. It is assumed that such perturbation be
a first-order one, so that a linearized theory can be applied.

The theory developed in !\ef. 1 is based on Egs.(1). They can
be resolved along the tangent t to thetrajectoryandalong its

-

normal n in terms of accelerations. They canbe written in sym-
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bolic form:

~—
«
-
—
]
S
P

(31)

—
[~
3
—
L[]
S

whereas on the bi-normal the equation provides identically 0=0.

A disturbing .acceleration of .components Aa' , Aan , Aab is

now considered, small enough .to allow to discard changes in terms

such as [a,] [a,] . The equation of motion is consequently writ

ten as:
)
fa,]- + Qa, =0
[a,] + Ba, =0 y  (32).
da, = 0 )

I1f, as said above, first-order -effects are considered, the
evaluat.io_n of the effects due to Aa,, Aa_ , Aab , can be made
by considering a “unit” solutiorlu, and ‘then superimposing the ef-

fects of the various perturbations.

2 - .Unit perturbation

A generic point P (defined by its distance: r from the
planet .center) of a re-entry trajectory is considered (Fig.6);
the perturbation acting there is re-solved along thethree lines

(tengent, normal bi-normal). The effect of Aa, is an abrupt
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bi-normal P L/dr
da, T
Aa,
Aq ~ tgfgent
Normal
r
Fig. 6 - Unit perturbation
change in the total velocity given by:
dV = Qa, - dt (33)

(where dt 1is the time elapsed to travel the distance dr). The

effect of Da, is an abrupt change in flight path:

do = - dt (34)

The effect of Ae, is a rota! onof the plane of the trajectory.

a, {
dy = ——b — 35
W v (35)

Since dt = dr/(Vsinf@) the foregoing equations can be written:
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dV

Aa \

dé
Vising

i

(36)

Aahdr‘
V? siné )

dy =

Since no perturbation are acting after P , the equations of
the disturbed trajectory after auch point are the same of the
undisturbed one; .with .the conditions.that velocity, flight path
angle, and plane .rotation at P are V+dV,60 +df, dvy .

This is equivalent to say that the portion of trajectory fol-
lowing the point of perturbation is an indisturbed trajectory
such that:

(a) the plane is rotated of dvy ;
(b) the limiting conic parameters are changed of such quantities
de , dx that the variations dV, df are produced at P .

In oth;er .words, .the solution corresponding to the perturbation
is the one indicated in Fig.7. Before r , the equations of .the
t.raject.ot;y are the undisturbed ones and (€ ,.x) are the limiting
conic parameters; after r the equations are .still the undis-
‘turb;d ones, and (e +dey.x+dyx) are the limiting conic para-
meters. Besides that, the plane of the trajectory is rotated of
an angle dy about .the focal axis of the limiting capic.

Naturally the question arises as how to relate de , dy to

dV , d9 , and vice-versa. This is very simply done by calculating
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undisturbed

equations limjting conic
parameters: €,

undisturbed
equations

‘limiting conic
parameters: €+de , ytdy

Fig. 7 - Change in limiting conic parameters.

three trajectories: one corresponding to (€, x) ; one -corres-
ponding to (€ +8¢, x) ; one to 'le, x+8x) . If 8¢ , 8y are
sufficiently small, by comparing quantities corresponding to the

same £ , one has, f.i.;

BLV/V,) o VIV 5y - VIV, (37)
%€ Se”

and so for all the other derivatives, such as:

alv/v,) 99  9f
9 % T 9y

whence, by simple inversion, also partial derivatives such as:
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de ) J€ ) 3)( . Bx
alv/v,y ' 2@ alv/v,) ' 96

Thus, coming back to the unit solution, the limiting conic of

are evaluated.

‘the points following p has parameters e+de , x+dy where:

A

de d€e Aa, . o€ Aa, .
= r
3 V/Ve) VVesinb 36 V3sind
38
- Qa . ex Aa + (38)
dy = i dr + ——— —-2_ dr
AV/V,) VV.sinb 96 V?sinb
J
and a rotation dy¥ of its plane:
Aa,dr
d = -__'.’._
v Vising (39)

3 - Distributed perturbations

If a continuous distribution Aa,, Aa , Aa, of perturbations
is applied to the trajectory, each element of it canbe considerz;.d
as a portion of a trajectory having as limiting conic € + Ae ,
x + Ax where Ae and Ay are the sum of the quantities de, dy
preceeding the point under concern. And, so:

F e Aa % A ‘

a
Ae = ( . A— ) d
Jing, 3V/V,) VV,sin® ' 36 Visind

-

r ax A.a ax A L
Ay = ( s — ) d 40
X jiuﬂ M V/Ve) VVesinb ' 90 Visind r (40)

< Qa,dr
Ay = ing VZsin6 J
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which is the general answer to the small perturbations theory in
re-entry trajectories. This means that each element can be thought
as that of limiting conic Ac¢ , Ay . To calculate Ae and Ay

1t is necessary to know.

d¢€
CIR 72

( 1) the four partial derivatives etc.
{ 11.) the base trajectory;
{311) and - of course - the disturbances.
it is also seen that the small-perturbations theory can be

applied o similar solutions

Indeed Egs (40) can be written.

£
A - ( 3»" r,0a, 1 +E rIlA_q , 1 } 3
, olwv,) ¥Z s 36 V2 \V/V,)%sinf © (1-£)?

Ay - if{ 9, reba, 1 3y rybda, 1 } d&
X2, TRV, T vt sin 98 v (V/V,)%sin6 © (1-€)?

A - £ r,.Aa‘,Z- 1 d£ (aD)
i 1 V3 (V,/"V*)?s nd 1-¢£2?

where only similar quantities are appearing. Obviously new pa-
rameters must be considered waich arise fromthe actual expres-

Aa

sions of quanrities such as La, , Aa b -

n P
Once the quantities Ac Z ¢ Oy have been calculated, the
perturbed velocities and ang!:s at every point of the trajec-

tory are given by
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-1 26
86 = === Be + —— by
(42)
_atw/y,) Av/v,)
A(V/V,) ———_gé——- Ae + —-—.a-x—- AX

4 - Application to n n-conductive ablation

An application of the above theory can be made to the case of
bodies re-entry with a limited amount of ablation. The difference
from the non ablating case is now in thecircumstance in the fact
that the mass m 18 no longer constant, but is varying along the
trajectory according to the law:

dn
dt

q
T o ovee——— 4

where K denotes the ablation coefficient (Ref.4).

If K 1is a constant:

n(g) = m, - 2L (44)

where Q(£)is the total heat transferred to the body from the be-
ginning up to the point being considered.
The aforesaid mass variation can'be considered, for every point

of the trajectory, as a perturbation of components:
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cppA V’(_i_ - _..1_) =

la, = DBay, = 0 ; Aa, . .
0

(p~-m,)
=_%chA:' g LI (45)
®o

oL R
2 ®,

and so:

kpViQ

Kom, (46)

t

Aa =-—1—
2

Relative ablation corresponding to the.total heat Q; transfer

red to the body up to landing is given by: (with m=final mass):

Aoy 9 (47)
®o K=,
and so:
1 = - o
ba, = —kpyr=2e Q. Ly el V) m°m ¢ (48)
2 », ¢ 2 Pe V, R ¢

Therefore Eqs. (41) of the foregoing Article provide:
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Ne _ ¢ a,sinf, ( o )(_}_’_)2 de 3 \
mom, ; 2 pe Ve OV/V,) (1-E1%5ing

™o

Ay $a,sinf,  p 14 9y d¢

= — (=)

®-m '/; o, V., 9oiV/V,) (1-£)?5inb k (49)

Mo

Ay = 0

which express the variations of limiting conic parameters cor-
responding to a total ablation (w = 0). For =m#0 it isenough

to multiply the corresponding quantities by the ablation rate.

5 - Numerical example

A numerical case was calculated with the data of Fig. 8. 1In
the same plot the velocity variation wvs.£ 1is represented for a.
trajectory having a circle as limiting conic. The values of AV
refer to the case of complete ablation: in the case of partial
ablation it is enough .- as said above - to multiply the values
by the percentage of ablated weight. Thus, f.i., at DP (-VV:=1)5
the ordinate of the plot is 0.:24, and, .for an ablation of 30%,

one would have

~ - 0.08 . Similar considerations apply to
: ,

the case of escape velocity (Fig.9). In this case the change of
velocity for an ablation of 30% is ~ -0 07. Both cases refer to

a maximum deceleration of 10g
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Fig 10 and Fig.1ll show respectively the flight path angle va-
riation for a complete ablation.

In this case the effect 18 to increase the angle. For the or-
bital speed and ablatjon of 30% gives achunge of the angle of
about 1/8 of the unperturbed value: the corr sjonding value for

the escape velocity is about 8%
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APPENDIX

DETERMINATION OF APPROXIMATE
CONIC - DP RELATIONSHIPS

1. Let:
h
2 =t (A1)
w2
Remembering (23), the first of Eqs.(26) is written.
()
x ¢ = a,x + a2x2+ 0313 (A2)
Denoting by a dot derivatives with respect to x , the con-

ditions on a4, a, a; for identifying Eqs.(A2) and its first

and second derivative at DP, are:

.= +
2, 01*02"'03 Zo

. 1
z, " z, = a, *2a, *+ 3a,
2 1 1

~Z}~-;~ i,+-;-(—;—+1)z. =2d,+603

whence.
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1 . 1 1
a, = ..%",-(2.».—0-'—);‘ + {(14:—)(247)*1}(1.-z°)
ay =~ Ze +(3+—2-)}, - {(1+-£-)(3+—!-)}(z.-z¢)
a a a
Ze 1, - 1 1. 024 -2¢)
I e

If quantities of the order of 1f/a are neglected as compared

to unity, one has finally:

1 .
a, =-1?-E. - 224 ¢+ 3z, - 24) ‘
a, = — Ze + Jze - 334 - lw) 4 (a3)
a,=-—124-’..“lo“o) J

. Evaluation of ;. , ;. is now performed.

Form the second of Eqs. (1), remembering Lygs. (23),(2),(5), of
Part I:

d in0 -t/a
4 - AQe8lN, zZNx [I_chta“e]

dx a sintl

whence:



47

and, for n=3

in the sum of a 's

L] a
Zy = -a-‘ zo[1 -\ qa tan 6,]
The second derivative is now performed. It is obtained:
. a,sinf, 1/a cosd sinf -
= — - -1 —_— )0 -
? a (2= { sin?b the cos?6
(1~ e . L
, ot )\‘«ptan (zmxiP 4+ zyxile  — ;py a!
sin O a
The value of & at DP is obtained from the firstof Eq
and it is easily obtained
o - . _cot e zecos’ O, _ Ageas
* a 2.-sin 6, 2a
and so:
. ae8inb, . cotby  24c08°6, AN @eas. cosBe
e * 2 [ - . + | - +
a ' a 2a sin 6, 2 sin?6,
sinf,  Ne s 1-Ag,tand, .
+ A. ) - + ( ] .) .
e cos?6, cosb, sinf, (=,
a .
+ ——(1-Ag tand,))
a
. Eqs.(24) and (27) yield at DP:
1 a b
= 26, - — . 1 —i)
X = tan*6, ~ (%. - ‘2 —

cos

remembering (A3):

(A4)

}+

.
R

(AS)
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i IS U
(A6)
Since.
. = hr, _ _Gusin 6. 1 x+1
* w,  n,cos?6, fo T €+ 1
Eq. (A6) can be written:
11 x
X~ e 1 = F (6, no) (A7)
where:
( . 1 . .
F (6,. n,) = tan?6, -'?;:(z. - 5z, ¢+ 112,) (A8)

is a function depending only on quantities at DP.
In a similar way, from the second of Egs. (1), by integrating
from DP up to infinity (and neglecting L/D tan¢, and varia-

tions of k ):

2n,
1 "—"T——_T-'---?"
lo Yo 92 i 1 assinGa\1+(L/D) +__£. sine. i
A I z.tan b, 3 sin6,

)

' cos?6, » B : : .

- . (A9)
A, %; n-1
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where 6, is the lowest height at which 66, . By letting

sin 9¢ ~ tan 6,

) . xt1 e+1-& _
sin6, ~ tan 9‘ = \/ =+ 1 (1 z. 2 1 (A10)
whence.
) x+1 1 sin 6, )
log w1 3 - F,(n, 6,)

\/x+1 €+1 £,
e+1 (1-£)?

with.
4 - 2n,
r - 2 1 a.sinf, Vi +(L/DR cos?6, g b, ]
= —_— - — - - log z
2 3 6 a,tan @, a, 1" n-{4 ¢

(Al11)
Egs. (A7(All) are the same as Egs.(28)(29) of Part I.
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GLOSSARY OF SYMBOLS

normal acceleration (in Part I,

Eq. (26))

tangent acceleration
coefficients of expansion (26)
drag coefficient

gravity acceleration
gravitational constant

(cDAJ/m

body mass

ratio of deceleration to gravity
heat rate

radius from earth center

time

areal velocity

nondimensional density
altatude

main cross-area
naondimensional value of generic
drag

total energy

lift

point of trajectory

total heat transferred

velocity

coefficient of

P-property
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a - planetary atmosphere constant
B - a/R
€ - nondimensional total energy

@ - function defining lift modulation (Eq.(5))

n - no:d mens.o al k (¥q (5))

K - limiting onic p:rameter

A - parameter of lift modulation (Eq.(5))

] - flight path angle

y - -otation of flight plane

P - alr density

£ - nondimensional altitude .(Eq.(4))

X - nondimensional conic parameter

Aa,

Aa components of perturbing accel ‘ration ~n a0.mal,
¢ t ngent, bi normal, respectively

Aa,

SUBSCRIPTS

. den~tes values a2t DP

o - values at infinaity
1 - reference values
Cc | - values of limiting conic

- final values
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